In this paper we study the O-sequences of local (or graded) K-algebras of socle degree 4. More precisely, we prove that an O-sequence h=(1,3,h2,h3,h4), where h4≥2, is the h-vector of a local level K-algebra if and only if h3≤3h4. A characterization is also presented for Gorenstein O-sequences. In each of these cases we give an effective method to construct a local level K-algebra with a given h-vector. Moreover we refine a result of Elias and Rossi by showing that if h=(1,h1,h2,h3,1) is a unimodal Gorenstein O-sequence, then h forces the corresponding Gorenstein K-algebra to be canonically graded if and only if h1=h3and h2=(h1+12), that is the h-vector is maximal. We discuss analogue problems for higher socle degrees.

Artinian level algebras of socle degree 4

Rossi, M. E.
2018

Abstract

In this paper we study the O-sequences of local (or graded) K-algebras of socle degree 4. More precisely, we prove that an O-sequence h=(1,3,h2,h3,h4), where h4≥2, is the h-vector of a local level K-algebra if and only if h3≤3h4. A characterization is also presented for Gorenstein O-sequences. In each of these cases we give an effective method to construct a local level K-algebra with a given h-vector. Moreover we refine a result of Elias and Rossi by showing that if h=(1,h1,h2,h3,1) is a unimodal Gorenstein O-sequence, then h forces the corresponding Gorenstein K-algebra to be canonically graded if and only if h1=h3and h2=(h1+12), that is the h-vector is maximal. We discuss analogue problems for higher socle degrees.
File in questo prodotto:
File Dimensione Formato  
Masuti-Rossi.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 551.23 kB
Formato Adobe PDF
551.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/913466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact