We study moduli spaces of sheaves over nonprojective K3 surfaces. More precisely, let omega be a Kahler class on a K3 surface S, let rgeq 2 be an integer, and let v = (r,\xi, a) be a Mukai vector on S. We show that if the moduli space M of omega-stable vector bundles with associated Mukai vector v is compact, then M is an irreducible holomorphic symplectic manifold which is deformation equivalent to a Hilbert scheme of points on a K3 surface. Moreover, we show that there is a Hodge isometry between v^{perp} and H^2(M,mathbb{Z}) and that M is projective if and only if S is projective.
Titolo: | Moduli spaces of bundles over nonprojective K3 surfaces |
Autori: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Handle: | http://hdl.handle.net/11567/897031 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
Moduli spaces of bundles over nonprojective K3 surfaces - arxiv version.pdf | Articolo principale | Documento in Pre-print | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.