In this paper we study moduli spaces of sheaves on an abelian or projective K3 surface. If S is a K3, v = 2w is a Mukai vector on S, where w is primitive and w^{2}= 2, and H is a v-generic polarization on S, then the moduli space M_v of H-semistable sheaves on S whose Mukai vector is v admits a symplectic resolution \widetilde{M}_v. A particular case is the 10-dimensional O'Grady example \widetilde{M}_10 of an irreducible symplectic manifold. We show that \widetilde{M}_v is an irreducible symplectic manifold which is deformation equivalent to \widetilde{M}_10 and that H2(M_v,\mathbb{Z}) is Hodge isometric to the sublattice v^{\perp} of the Mukai lattice of S. Similar results are shown when S is an abelian surface. © Walter de Gruyter Berlin · Boston 2013.

Deformation of the O'Grady moduli spaces

Perego, Arvid;
2013-01-01

Abstract

In this paper we study moduli spaces of sheaves on an abelian or projective K3 surface. If S is a K3, v = 2w is a Mukai vector on S, where w is primitive and w^{2}= 2, and H is a v-generic polarization on S, then the moduli space M_v of H-semistable sheaves on S whose Mukai vector is v admits a symplectic resolution \widetilde{M}_v. A particular case is the 10-dimensional O'Grady example \widetilde{M}_10 of an irreducible symplectic manifold. We show that \widetilde{M}_v is an irreducible symplectic manifold which is deformation equivalent to \widetilde{M}_10 and that H2(M_v,\mathbb{Z}) is Hodge isometric to the sublattice v^{\perp} of the Mukai lattice of S. Similar results are shown when S is an abelian surface. © Walter de Gruyter Berlin · Boston 2013.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/896989
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
social impact