To address the issue of extracting useful information from large data-set of large scale networks of neurons, we propose an algorithm that involves both algebraic-statistical and topological tools. We investigate the electrical behavior of in vitro cortical assemblies both during spontaneous and stimulus-evoked activity coupled to Micro-Electrode Arrays (MEAs). Our goal is to identify core sub-networks of repetitive and synchronous patterns of activity and to characterize them. The analysis is performed at different resolution levels using a clustering algorithm that reduces the network dimensionality. To better visualize the results, we provide a graphical representation of the detected sub-networks and characterize them with a topological invariant, i.e. the sequence of Betti numbers computed on the associated simplicial complexes. The results show that the extracted sub-populations of neurons have a more heterogeneous firing rate with respect to the entire network. Furthermore, the comparison of spontaneous and stimulus-evoked behavior reveals similarities in the identified clusters of neurons, indicating that in both conditions similar activation patterns drive the global network activity.

A topological study of repetitive co-activation networks in in vitro cortical assemblies

Pirino, Virginia;Riccomagno, Eva;Martinoia, Sergio;Massobrio, Paolo
2015

Abstract

To address the issue of extracting useful information from large data-set of large scale networks of neurons, we propose an algorithm that involves both algebraic-statistical and topological tools. We investigate the electrical behavior of in vitro cortical assemblies both during spontaneous and stimulus-evoked activity coupled to Micro-Electrode Arrays (MEAs). Our goal is to identify core sub-networks of repetitive and synchronous patterns of activity and to characterize them. The analysis is performed at different resolution levels using a clustering algorithm that reduces the network dimensionality. To better visualize the results, we provide a graphical representation of the detected sub-networks and characterize them with a topological invariant, i.e. the sequence of Betti numbers computed on the associated simplicial complexes. The results show that the extracted sub-populations of neurons have a more heterogeneous firing rate with respect to the entire network. Furthermore, the comparison of spontaneous and stimulus-evoked behavior reveals similarities in the identified clusters of neurons, indicating that in both conditions similar activation patterns drive the global network activity.
File in questo prodotto:
File Dimensione Formato  
Pirino_2015_Phys._Biol._12_016007.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/893456
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact