Abstract BACKGROUND: Human natural killer (NK) cells are thought to play a role in antiviral response and tumor immune surveillance. The molecular mechanisms of down regulation of NK-cell activity observed after red blood cell (RBC) transfusion is still undefined. STUDY DESIGN AND METHODS: Both effects of blood transfusion (ex vivo) and supernatants (SNs) derived from RBC units unstored (RBC-0) or stored for 5 or 30 days (RBC-5 or -30, respectively) in vitro were analyzed on NK cell-mediated cytolytic activity. RESULTS: We have found that NK cells isolated from transfused patients on Day 3 lysed the NK-sensitive target cells K562 to a lesser extent than before transfusion. This down regulation of NK-cell activation was evident also for NK-cell killing mediated through the engagement of NK cell-activating receptors as NKG2D, NKp30, NKp46, and CD16. Transfused patients reacquired NK cell-mediated cytolytic activity from Day 5 to Day 7 after transfusion. SN from RBC-30, but not from RBC-0 or RBC-5, strongly inhibited the generation of lymphokine-activated killer (LAK) cells and lysis of the NK-resistant target cell Jurkat in a dose-dependent manner. Transforming growth factor-β1 (TGF-β1) blocking antibodies partially restored the generation of LAK activity. In addition, the depletion of both soluble Class I human leukocyte antigens (sHLA-I) and soluble Fas ligand (sFasL) from SN of RBC-30 completely restored the generation of LAK activity. CONCLUSIONS: Altogether, these findings would support the idea that blood transfusion-mediated down regulation of NK-cell activity is mediated by sHLA-I, sFasL, and TGF-β1.

Down regulation of human natural killer cell-mediated cytolysis induced by blood transfusion: Role of transforming growth factor-β1, soluble Fas ligand, and soluble Class i human leukocyte antigen

Contini, P.;Negrini, S.;Poggi, A.
2011

Abstract

Abstract BACKGROUND: Human natural killer (NK) cells are thought to play a role in antiviral response and tumor immune surveillance. The molecular mechanisms of down regulation of NK-cell activity observed after red blood cell (RBC) transfusion is still undefined. STUDY DESIGN AND METHODS: Both effects of blood transfusion (ex vivo) and supernatants (SNs) derived from RBC units unstored (RBC-0) or stored for 5 or 30 days (RBC-5 or -30, respectively) in vitro were analyzed on NK cell-mediated cytolytic activity. RESULTS: We have found that NK cells isolated from transfused patients on Day 3 lysed the NK-sensitive target cells K562 to a lesser extent than before transfusion. This down regulation of NK-cell activation was evident also for NK-cell killing mediated through the engagement of NK cell-activating receptors as NKG2D, NKp30, NKp46, and CD16. Transfused patients reacquired NK cell-mediated cytolytic activity from Day 5 to Day 7 after transfusion. SN from RBC-30, but not from RBC-0 or RBC-5, strongly inhibited the generation of lymphokine-activated killer (LAK) cells and lysis of the NK-resistant target cell Jurkat in a dose-dependent manner. Transforming growth factor-β1 (TGF-β1) blocking antibodies partially restored the generation of LAK activity. In addition, the depletion of both soluble Class I human leukocyte antigens (sHLA-I) and soluble Fas ligand (sFasL) from SN of RBC-30 completely restored the generation of LAK activity. CONCLUSIONS: Altogether, these findings would support the idea that blood transfusion-mediated down regulation of NK-cell activity is mediated by sHLA-I, sFasL, and TGF-β1.
File in questo prodotto:
File Dimensione Formato  
Ghio_et_al-2011-Transfusion.pdf

accesso chiuso

Descrizione: Down regulation of human natural killer cell-mediated cytolysis induced by blood transfusion: role of transforming growth factor-beta(1), soluble Fas ligand, and soluble Class I human leukocyte antigen
Tipologia: Documento in versione editoriale
Dimensione 564.66 kB
Formato Adobe PDF
564.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/889531
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact