In this paper we prove boundedness results on atomic Hardy type spaces for multipliers of the spherical transform on noncompact symmetric spaces of arbitrary rank. The multipliers we consider satisfy either inhomogeneous or homogeneous Mihlin-Hörmander type conditions. In particular, we are able to treat the case of {strongly singular multipliers} whose convolution kernels are not integrable at infinity. Thus our results apply also to negative and imaginary powers of the Laplacian.

Endpoint results for spherical multipliers on noncompact symmetric spaces

Giancarlo Mauceri;
2017-01-01

Abstract

In this paper we prove boundedness results on atomic Hardy type spaces for multipliers of the spherical transform on noncompact symmetric spaces of arbitrary rank. The multipliers we consider satisfy either inhomogeneous or homogeneous Mihlin-Hörmander type conditions. In particular, we are able to treat the case of {strongly singular multipliers} whose convolution kernels are not integrable at infinity. Thus our results apply also to negative and imaginary powers of the Laplacian.
File in questo prodotto:
File Dimensione Formato  
postprint.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Dimensione 538.83 kB
Formato Adobe PDF
538.83 kB Adobe PDF Visualizza/Apri
postprint.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Dimensione 538.83 kB
Formato Adobe PDF
538.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/889162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact