The most common CF mutation, F508del, impairs the processing and gating of CFTR protein. This deletion results in the improper folding of the protein and its degradation before it reaches the plasma membrane of epithelial cells. Present correctors, like VX809 only induce a partial rescue of the mutant protein. Our previous studies reported a class of compounds, called aminoarylthiazoles (AATs), featuring an interesting activity as correctors. Some of them show additive effect with VX809 indicating a different mechanism of action. In an attempt to construct more interesting molecules, it was thought to generate chemically hybrid compounds, blending a portion of VX809 merged to the thiazole scaffold. This approach was guided by the development of QSAR analyses, which were performed based on the F508del correctors so far disclosed in the literature. This strategy was aimed at exploring the key requirements turning in the corrector ability of the collected derivatives and allowed us to derive a predictive model guiding for the synthesis of novel hybrids as promising correctors. The new molecules were tested in functional and biochemical assays on bronchial CFBE41o-cells expressing F508del-CFTR showing a promising corrector activity.
Synthesis and biological evaluation of novel thiazole- VX-809 hybrid derivatives as F508del correctors by QSAR-based filtering tools
Liessi, Nara;Cichero, Elena;Arkel, Maria;Salis, Annalisa;Paccagnella, Matteo;Damonte, Gianluca;Tasso, Bruno;Fossa, Paola;Millo, Enrico
2018-01-01
Abstract
The most common CF mutation, F508del, impairs the processing and gating of CFTR protein. This deletion results in the improper folding of the protein and its degradation before it reaches the plasma membrane of epithelial cells. Present correctors, like VX809 only induce a partial rescue of the mutant protein. Our previous studies reported a class of compounds, called aminoarylthiazoles (AATs), featuring an interesting activity as correctors. Some of them show additive effect with VX809 indicating a different mechanism of action. In an attempt to construct more interesting molecules, it was thought to generate chemically hybrid compounds, blending a portion of VX809 merged to the thiazole scaffold. This approach was guided by the development of QSAR analyses, which were performed based on the F508del correctors so far disclosed in the literature. This strategy was aimed at exploring the key requirements turning in the corrector ability of the collected derivatives and allowed us to derive a predictive model guiding for the synthesis of novel hybrids as promising correctors. The new molecules were tested in functional and biochemical assays on bronchial CFBE41o-cells expressing F508del-CFTR showing a promising corrector activity.File | Dimensione | Formato | |
---|---|---|---|
EJMC2018.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
2.23 MB
Formato
Adobe PDF
|
2.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
11567_888000_Fossa.pdf
accesso aperto
Descrizione: pre-print version
Tipologia:
Documento in Pre-print
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.