The capacity of a clustering model can be defined as the ability to represent complex spatial data distributions. We introduce a method to quantify the capacity of an approximate spectral clustering model based on the eigenspectrum of the similarity matrix, providing the ability to measure capacity in a direct way and to estimate the most suitable model parameters. The method is tested on simple datasets and applied to a forged banknote classification problem.

Measuring clustering model complexity

Rovetta, Stefano;Masulli, Francesco;Cabri, Alberto
2017

Abstract

The capacity of a clustering model can be defined as the ability to represent complex spatial data distributions. We introduce a method to quantify the capacity of an approximate spectral clustering model based on the eigenspectrum of the similarity matrix, providing the ability to measure capacity in a direct way and to estimate the most suitable model parameters. The method is tested on simple datasets and applied to a forged banknote classification problem.
File in questo prodotto:
File Dimensione Formato  
2017-icann2017-Complexity.pdf

accesso chiuso

Descrizione: Articolo
Tipologia: Documento in versione editoriale
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/885687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact