The size of lentiviral DNA reservoirs reflects the effectiveness of immune responses against lentiviruses. So far, abundant information has been gathered on the control of HIV-1 replication. Understanding the innate mechanisms contributing to containment of the HIV DNA reservoir, however, are only partly clarified and are relevant to guiding interventions for reservoir containment or eradication. We studied the contribution of natural killer (NK) cell functional features in HIV patients controlling replication either spontaneously (HIV controllers [HIC]) or after progression and antiretroviral treatment (progressor patients [PP]). An inverse correlation between HIV DNA copy numbers (either total or integrated) in circulating CD4+cells and NK cell function was observed. Induced interferon gamma (IFN-γ) production and NKp46/NKp30 activating receptor-induced expression correlated inversely with reservoir size. The correlation was present not only for a homogeneous cohort of HIC patients but also when PP were included in the analysis. Adaptive (NKG2C+CD57+) NK cell features were not associated with reservoir size. However, a distinct set of 370 differentially expressed transcripts was found to underlie functional differences in NK cells controlling HIV DNA reservoir size. In proof-of-principle in vitro experiments of CD4+cell infection with HIV-1, purified NK cells with the abovementioned functional/transcriptional features displayed 10- and 30-fold higher abilities to control HIV replication and DNA burdens in vitro, respectively, than those of other NK cells. Thus, NK cells with a specific functional and transcriptional signature contribute to control of the HIV reservoir in CD4+cells. Their selection, expansion, and/or adoptive transfer may support strategies to eradicate HIV-1 infection or to safely deescalate antiretroviral treatment.

Control of the HIV-1 DNA reservoir is associated in vivo and in vitro with NKp46/NKp30 (CD335 CD337) inducibility and interferon gamma production by transcriptionally unique NK cells

Marras, Francesco;Bozzano, Federica;Orlandi, Chiara;Di Biagio, Antonio;Dentone, Chiara;Nicolini, Laura;Taramasso, Lucia;Magnani, Mauro;Moretta, Lorenzo;De Maria, Andrea
2017-01-01

Abstract

The size of lentiviral DNA reservoirs reflects the effectiveness of immune responses against lentiviruses. So far, abundant information has been gathered on the control of HIV-1 replication. Understanding the innate mechanisms contributing to containment of the HIV DNA reservoir, however, are only partly clarified and are relevant to guiding interventions for reservoir containment or eradication. We studied the contribution of natural killer (NK) cell functional features in HIV patients controlling replication either spontaneously (HIV controllers [HIC]) or after progression and antiretroviral treatment (progressor patients [PP]). An inverse correlation between HIV DNA copy numbers (either total or integrated) in circulating CD4+cells and NK cell function was observed. Induced interferon gamma (IFN-γ) production and NKp46/NKp30 activating receptor-induced expression correlated inversely with reservoir size. The correlation was present not only for a homogeneous cohort of HIC patients but also when PP were included in the analysis. Adaptive (NKG2C+CD57+) NK cell features were not associated with reservoir size. However, a distinct set of 370 differentially expressed transcripts was found to underlie functional differences in NK cells controlling HIV DNA reservoir size. In proof-of-principle in vitro experiments of CD4+cell infection with HIV-1, purified NK cells with the abovementioned functional/transcriptional features displayed 10- and 30-fold higher abilities to control HIV replication and DNA burdens in vitro, respectively, than those of other NK cells. Thus, NK cells with a specific functional and transcriptional signature contribute to control of the HIV reservoir in CD4+cells. Their selection, expansion, and/or adoptive transfer may support strategies to eradicate HIV-1 infection or to safely deescalate antiretroviral treatment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/884521
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 35
social impact