The increasing attention devoted to air quality by legislative, scientific, industrial and public sectors has led to the development of different control strategies for the emission level monitoring. In this scenario, Predictive Emission Monitoring System (PEMS) is able to predict emission concentrations thanks to empirical or first principles models fed by real-time process data provided by measurement sensors. It follows that PEMS consistency (and, crucially, its acceptance from regulations-enforcing agencies) strictly depends on input accuracy and that reliable Sensor Validation (SV) strategies are fundamental. In this work, the capability of two different SV techniques, Feed Forward Neural Networks and Locally Weighted Regression, is tested exploiting a commercial software package (ABB's IMP) on actual field data from a fluid catalytic cracking unit. The results showed that both techniques are suitable as complement to PEMS applications, but Locally Weighted Regression results are preferable for performance, economic and operating reasons.

Assessment and testing of sensor Validation algorithms for environmental monitoring applications

Bosio, Barbara;BONAVITA, NUNZIO
2017

Abstract

The increasing attention devoted to air quality by legislative, scientific, industrial and public sectors has led to the development of different control strategies for the emission level monitoring. In this scenario, Predictive Emission Monitoring System (PEMS) is able to predict emission concentrations thanks to empirical or first principles models fed by real-time process data provided by measurement sensors. It follows that PEMS consistency (and, crucially, its acceptance from regulations-enforcing agencies) strictly depends on input accuracy and that reliable Sensor Validation (SV) strategies are fundamental. In this work, the capability of two different SV techniques, Feed Forward Neural Networks and Locally Weighted Regression, is tested exploiting a commercial software package (ABB's IMP) on actual field data from a fluid catalytic cracking unit. The results showed that both techniques are suitable as complement to PEMS applications, but Locally Weighted Regression results are preferable for performance, economic and operating reasons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/884333
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact