In recent years microporous hollow fiber membrane contactors (HFMCs) have been intensively studied for many separation operations, among which chemical CO2absorption from gaseous mixtures. The vast majority of studies on this subject are conducted at laboratory scale and focus on simple model gases. At pilot and demonstration scale fewer investigations are available and a thorough knowledge on the concrete applicability of HFMCs under realistic conditions is still lacking at present. This work stems from a cooperative project involving two industrial partners, IPLOM, a refinery, and Italiana Coke, a coking plant, strongly interested in a possible implementation of HFMC-based units within their processes. A pilot plant has been expressly designed and operated for this study; the heart is a special pressure-resistant HFMC. Our aim was to experimentally assess the behavior of membranes in presence of raw industrial gaseous effluents which, due to their own complexity, could generate unexpected and challenging problems. At the same time different absorbing aqueous solutions, giving rise to different membrane/solvent interactions, have been assessed. Particular efforts were devoted in this work to exploring the feasibility of HFMC-based devices capable of operating at elevated pressures, an important issue on which a surprising lack of information exists.
Exploring CO2capture from pressurized industrial gaseous effluents in membrane contactor-based pilot plant
Comite, Antonio;Costa, Camilla;Di Felice, Renzo;Oliva, Maddalena
2017-01-01
Abstract
In recent years microporous hollow fiber membrane contactors (HFMCs) have been intensively studied for many separation operations, among which chemical CO2absorption from gaseous mixtures. The vast majority of studies on this subject are conducted at laboratory scale and focus on simple model gases. At pilot and demonstration scale fewer investigations are available and a thorough knowledge on the concrete applicability of HFMCs under realistic conditions is still lacking at present. This work stems from a cooperative project involving two industrial partners, IPLOM, a refinery, and Italiana Coke, a coking plant, strongly interested in a possible implementation of HFMC-based units within their processes. A pilot plant has been expressly designed and operated for this study; the heart is a special pressure-resistant HFMC. Our aim was to experimentally assess the behavior of membranes in presence of raw industrial gaseous effluents which, due to their own complexity, could generate unexpected and challenging problems. At the same time different absorbing aqueous solutions, giving rise to different membrane/solvent interactions, have been assessed. Particular efforts were devoted in this work to exploring the feasibility of HFMC-based devices capable of operating at elevated pressures, an important issue on which a surprising lack of information exists.File | Dimensione | Formato | |
---|---|---|---|
Exploring CO2 capture.pdf
accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in versione editoriale
Dimensione
2.56 MB
Formato
Adobe PDF
|
2.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.