Macaulay's Inverse System gives an effective method to construct Artinian Gorenstein $k$-algebras. To date a general structure for Gorenstein $k$-algebras of any dimension (and codimension) is not understood. In this paper we extend Macaulay's correspondence characterizing the submodules of the divided power ring in one-to-one correspondence with Gorenstein d-dimensional $k$-algebras. We discuss effective methods for constructing Gorenstein graded rings. Several examples illustrating our results are given.
The structure of the inverse system of Gorenstein k-algebras
ROSSI, MARIA EVELINA
2017-01-01
Abstract
Macaulay's Inverse System gives an effective method to construct Artinian Gorenstein $k$-algebras. To date a general structure for Gorenstein $k$-algebras of any dimension (and codimension) is not understood. In this paper we extend Macaulay's correspondence characterizing the submodules of the divided power ring in one-to-one correspondence with Gorenstein d-dimensional $k$-algebras. We discuss effective methods for constructing Gorenstein graded rings. Several examples illustrating our results are given.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GorensteinAdvances.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
553.87 kB
Formato
Adobe PDF
|
553.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.