Macaulay's Inverse System gives an effective method to construct Artinian Gorenstein $k$-algebras. To date a general structure for Gorenstein $k$-algebras of any dimension (and codimension) is not understood. In this paper we extend Macaulay's correspondence characterizing the submodules of the divided power ring in one-to-one correspondence with Gorenstein d-dimensional $k$-algebras. We discuss effective methods for constructing Gorenstein graded rings. Several examples illustrating our results are given.

The structure of the inverse system of Gorenstein k-algebras

ROSSI, MARIA EVELINA
2017-01-01

Abstract

Macaulay's Inverse System gives an effective method to construct Artinian Gorenstein $k$-algebras. To date a general structure for Gorenstein $k$-algebras of any dimension (and codimension) is not understood. In this paper we extend Macaulay's correspondence characterizing the submodules of the divided power ring in one-to-one correspondence with Gorenstein d-dimensional $k$-algebras. We discuss effective methods for constructing Gorenstein graded rings. Several examples illustrating our results are given.
File in questo prodotto:
File Dimensione Formato  
GorensteinAdvances.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 553.87 kB
Formato Adobe PDF
553.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/878839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact