Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger-Zacharias Theory and related Gröbner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Möller-Pritchard lifting theorem.
Buchberger-Zacharias Theory of multivariate Ore extensions
MORA, FERDINANDO
2017-01-01
Abstract
Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger-Zacharias Theory and related Gröbner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Möller-Pritchard lifting theorem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
InstitOrE.pdf
accesso aperto
Tipologia:
Documento in Post-print
Dimensione
296.82 kB
Formato
Adobe PDF
|
296.82 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.