Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger-Zacharias Theory and related Gröbner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Möller-Pritchard lifting theorem.

Buchberger-Zacharias Theory of multivariate Ore extensions

MORA, FERDINANDO
2017-01-01

Abstract

Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger-Zacharias Theory and related Gröbner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Möller-Pritchard lifting theorem.
File in questo prodotto:
File Dimensione Formato  
InstitOrE.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 296.82 kB
Formato Adobe PDF
296.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/878590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact