Microturbines represent a suitable technology to be adopted in smart microgrids since they are characterized by affordable capital and maintenance costs, high reliability and flexibility, and low environmental impact; moreover, they can be fed by fossil fuels or biofuels. They can operate in cogeneration and trigeneration mode, thus permitting to attain high global efficiency values of the energy conversion system from primary energy to electrical and thermal energy; from the electrical point of view, microturbines can operate connected to the distribution grid but also in islanded mode, thus enabling their use in remote areas without electrification. The paper describes the mathematical model that has been developed to simulate in off-design and transient conditions the operation of a 65 kWelcogeneration microturbine installed within a smart microgrid. The dynamic simulation model is characterized by a flexible architecture that permits to simulate other different size single-shaft microturbines. The paper reports the main equations of the model, focusing on the architecture of the simulator and the microturbine control system; furthermore the most significant results derived from the validation phase are reported too, referring to the microturbine installed in the Smart Polygeneration Microgrid of the Savona Campus at the University of Genoa in Italy.

A mathematical model for the dynamic simulation of low size cogeneration gas turbines within smart microgrids

BRACCO, STEFANO;DELFINO, FEDERICO
2017-01-01

Abstract

Microturbines represent a suitable technology to be adopted in smart microgrids since they are characterized by affordable capital and maintenance costs, high reliability and flexibility, and low environmental impact; moreover, they can be fed by fossil fuels or biofuels. They can operate in cogeneration and trigeneration mode, thus permitting to attain high global efficiency values of the energy conversion system from primary energy to electrical and thermal energy; from the electrical point of view, microturbines can operate connected to the distribution grid but also in islanded mode, thus enabling their use in remote areas without electrification. The paper describes the mathematical model that has been developed to simulate in off-design and transient conditions the operation of a 65 kWelcogeneration microturbine installed within a smart microgrid. The dynamic simulation model is characterized by a flexible architecture that permits to simulate other different size single-shaft microturbines. The paper reports the main equations of the model, focusing on the architecture of the simulator and the microturbine control system; furthermore the most significant results derived from the validation phase are reported too, referring to the microturbine installed in the Smart Polygeneration Microgrid of the Savona Campus at the University of Genoa in Italy.
File in questo prodotto:
File Dimensione Formato  
Bracco_Delfino_Energy_2017.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/872614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 42
social impact