BACKGROUND:Few studies have investigated the factors affecting aerosol delivery during non-invasive ventilation (NIV). Our aim was to investigate, using a bench-top model, the effect of different ventilator settings and positions of the exhalation port and nebulizer on the amount of albuterol delivered to a lung simulator. METHODS: A lung model simulating spontaneous breathing was connected to a single-limb NIV ventilator, set in bi-level positive airway pressure (BIPAP) with inspiratory/expiratory pressures of 10/5, 15/10, 15/5, and 20/10 cmH2O, or continuous positive airway pressure (CPAP) of 5 and 10 cmH2O. Three delivery circuits were tested: a vented mask with the nebulizer directly connected to the mask, and an unvented mask with a leak port placed before and after the nebulizer. Albuterol was collected on a filter placed after the mask and then the delivered amount was measured with infrared spectrophotometry. RESULTS: Albuterol delivery during NIV varied between 6.7 ± 0.4% to 37.0 ± 4.3% of the nominal dose. The amount delivered in CPAP and BIPAP modes was similar (22.1 ± 10.1 vs. 24.0 ± 10.0%, p = 0.070). CPAP level did not affect delivery (p = 0.056); in BIPAP with 15/5 cmH2O pressure the delivery was higher compared to 10/5 cmH2O (p = 0.033) and 20/10 cmH2O (p = 0.014). Leak port position had a major effect on delivery in both CPAP and BIPAP, the best performances were obtained with the unvented mask, and the nebulizer placed between the leak port and the mask (p < 0.001). CONCLUSIONS: In this model, albuterol delivery was marginally affected by ventilatory settings in NIV, while position of the leak port had a major effect. Nebulizers should be placed between an unvented mask and the leak port in order to maximize aerosol delivery.

Effects of ventilator settings, nebulizer and exhalation port position on albuterol delivery during non-invasive ventilation: an in-vitro study.

BALL, LORENZO;CARATTO, VALENTINA;SANGUINETI, ELISA;COSTANTINO, FEDERICO;FERRETTI, MAURIZIO;PELOSI, PAOLO PASQUALINO
2017-01-01

Abstract

BACKGROUND:Few studies have investigated the factors affecting aerosol delivery during non-invasive ventilation (NIV). Our aim was to investigate, using a bench-top model, the effect of different ventilator settings and positions of the exhalation port and nebulizer on the amount of albuterol delivered to a lung simulator. METHODS: A lung model simulating spontaneous breathing was connected to a single-limb NIV ventilator, set in bi-level positive airway pressure (BIPAP) with inspiratory/expiratory pressures of 10/5, 15/10, 15/5, and 20/10 cmH2O, or continuous positive airway pressure (CPAP) of 5 and 10 cmH2O. Three delivery circuits were tested: a vented mask with the nebulizer directly connected to the mask, and an unvented mask with a leak port placed before and after the nebulizer. Albuterol was collected on a filter placed after the mask and then the delivered amount was measured with infrared spectrophotometry. RESULTS: Albuterol delivery during NIV varied between 6.7 ± 0.4% to 37.0 ± 4.3% of the nominal dose. The amount delivered in CPAP and BIPAP modes was similar (22.1 ± 10.1 vs. 24.0 ± 10.0%, p = 0.070). CPAP level did not affect delivery (p = 0.056); in BIPAP with 15/5 cmH2O pressure the delivery was higher compared to 10/5 cmH2O (p = 0.033) and 20/10 cmH2O (p = 0.014). Leak port position had a major effect on delivery in both CPAP and BIPAP, the best performances were obtained with the unvented mask, and the nebulizer placed between the leak port and the mask (p < 0.001). CONCLUSIONS: In this model, albuterol delivery was marginally affected by ventilatory settings in NIV, while position of the leak port had a major effect. Nebulizers should be placed between an unvented mask and the leak port in order to maximize aerosol delivery.
File in questo prodotto:
File Dimensione Formato  
2017 BMCPulm_SALBU2.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 579.08 kB
Formato Adobe PDF
579.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/869421
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact