A focused N-substituted 3-(2-piperazin-1-yl-2-oxoethyl)-2-(pyridin-2-yl)iso-indolin-1-ones small library was synthesized for modulation of GABA-A receptor function and compared to Zopiclone for the ability to increase GABA-activated chloride currents. All compounds were tested for their effects on GABA-activated chloride currents in rat cerebellar granule cells by use of the whole-cell patch clamp technique. Electrophysiological studies on cultured cerebellar granule cells revealed 3-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]-2-(5-nitropyridin-2-yl)iso-indolin-1-one (Id) as a partial agonist displaying 34% increase of the 10 μM GABA evoked peak chloride currents, antagonized by flumazenil. Moreover, a second group of compounds, with bulky functional groups at N-4 position of piperazine, have shown inverse agonist effects. The simple synthetic procedure and the possibility of modulating the efficacy of this class of ligands through additional structural modifications pave the way for further development of new molecules as a novel class of compounds able to interfere with benzodiazepine receptors.

Synthesis and pharmacological evaluation of functionalized isoindolinones on GABA-activated chloride currents in rat cerebellum granule cells in culture

GATTA, ELENA;CUPELLO, AROLDO;ROBELLO, MAURO;
2016

Abstract

A focused N-substituted 3-(2-piperazin-1-yl-2-oxoethyl)-2-(pyridin-2-yl)iso-indolin-1-ones small library was synthesized for modulation of GABA-A receptor function and compared to Zopiclone for the ability to increase GABA-activated chloride currents. All compounds were tested for their effects on GABA-activated chloride currents in rat cerebellar granule cells by use of the whole-cell patch clamp technique. Electrophysiological studies on cultured cerebellar granule cells revealed 3-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]-2-(5-nitropyridin-2-yl)iso-indolin-1-one (Id) as a partial agonist displaying 34% increase of the 10 μM GABA evoked peak chloride currents, antagonized by flumazenil. Moreover, a second group of compounds, with bulky functional groups at N-4 position of piperazine, have shown inverse agonist effects. The simple synthetic procedure and the possibility of modulating the efficacy of this class of ligands through additional structural modifications pave the way for further development of new molecules as a novel class of compounds able to interfere with benzodiazepine receptors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/866348
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact