We classify up to conjugation by GL(2, ℝ) (more precisely, block diagonal symplectic matrices) all the semidirect products inside the maximal parabolic of Sp(2, ℝ) by means of an essentially geometric argument. This classification has already been established in [G. S. Alberti, L. Balletti, F. De Mari and E. De Vito, Reproducing subgroups of Sp(2, ℝ). Part I: Algebraic classification, J. Fourier Anal. Appl.9(4) (2013) 651–682] without geometry, under a stricter notion of equivalence, namely, conjugation by arbitrary symplectic matrices. The present approach might be useful in higher dimensions and provides some insight.
Geometric classification of semidirect products in the maximal parabolic subgroup of Sp(2, ℝ)
DE MARI CASARETO DAL VERME, FILIPPO;DE VITO, ERNESTO;VIGOGNA, STEFANO
2017-01-01
Abstract
We classify up to conjugation by GL(2, ℝ) (more precisely, block diagonal symplectic matrices) all the semidirect products inside the maximal parabolic of Sp(2, ℝ) by means of an essentially geometric argument. This classification has already been established in [G. S. Alberti, L. Balletti, F. De Mari and E. De Vito, Reproducing subgroups of Sp(2, ℝ). Part I: Algebraic classification, J. Fourier Anal. Appl.9(4) (2013) 651–682] without geometry, under a stricter notion of equivalence, namely, conjugation by arbitrary symplectic matrices. The present approach might be useful in higher dimensions and provides some insight.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GEOMETRIC CLASSIFICATION OF SEMIDIRECT PRODUCTS IN THE MAXIMAL PARABOLIC SUBGROUP OF Sp(2,R).pdf
accesso aperto
Tipologia:
Documento in Pre-print
Dimensione
342.17 kB
Formato
Adobe PDF
|
342.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.