Smart grid planning and control is becoming a theme of high interest in the last years. This is due to the presence of distributed generation, power from renewable resources and storage systems, to the different actors present over the territory, and to the difficulty of defining appropriate models for decision support. A bilevel optimal control scheme is proposed for grids characterized by renewable and traditional power production, bidirectional power flows, dynamic storage systems, and stochastic modeling issues. In this scheme, the upper level decision maker (UDM) views the lower level decision makers (LDMs) or microgrids as single nodes. In the statement of the UDM problem, the LDM control strategies are structurally and parametrically constrained inside a nonlinear optimization problem that includes load flow equations. Then, the LDMs can follow references from the UDM and use available information at the local level to solve a stochastic optimization problem. The proposed control architecture has been applied to a specific case study (Savona, Italy)
A Bi-level Approach for the Stochastic Optimal Operation of Interconnected Microgrids
MINCIARDI, RICCARDO;ROBBA, MICHELA
2017-01-01
Abstract
Smart grid planning and control is becoming a theme of high interest in the last years. This is due to the presence of distributed generation, power from renewable resources and storage systems, to the different actors present over the territory, and to the difficulty of defining appropriate models for decision support. A bilevel optimal control scheme is proposed for grids characterized by renewable and traditional power production, bidirectional power flows, dynamic storage systems, and stochastic modeling issues. In this scheme, the upper level decision maker (UDM) views the lower level decision makers (LDMs) or microgrids as single nodes. In the statement of the UDM problem, the LDM control strategies are structurally and parametrically constrained inside a nonlinear optimization problem that includes load flow equations. Then, the LDMs can follow references from the UDM and use available information at the local level to solve a stochastic optimization problem. The proposed control architecture has been applied to a specific case study (Savona, Italy)File | Dimensione | Formato | |
---|---|---|---|
T_ASE_DSO.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
666.53 kB
Formato
Adobe PDF
|
666.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.