Climate change is known to have a profound influence on plant reproduction, mainly because it affects plant/pollinator interactions, sometimes driving plants to extinction. Starting from the Neogene, the European climate was subjected to severe alterations. Nevertheless, several genera, including Berardia, survived these climatic changes. Despite the numerous studies performed about the relationship between climate change and plant reproductive biology, equivalent studies on ancient species are lacking, even though they may furnish crucial information on the strategies that allowed them to survive drastic climatic fluctuations. We investigated floral and reproductive features in Berardia subacaulis (Asteraceae), describing pollen vectors, capitulum and florets phenology, evaluating reproductive efficiency and defining the reproductive mode of the plant with bagging experiments and test of apomixis. B. subacaulis grows in habitats with low pollination services; it is self-compatible, but many typical features favouring cross-pollination are still present: florets are characterized by incomplete protandry, capitulum protogyny and high pollen–ovule ratio. The plant is not apomictic and selffertilization is allowed within each capitulum. Similarly to other European Alpine endemics supposed to belong to the Mediterranean ancient tropical flora, the reproductive mode observed in the monospecific genus Berardia assured reproduction also under a pollinator decline. Differently from the other endemics, it took advantage of its spontaneous self-pollination and compatibility and its generalist pollination service, common both among high altitude plants and in the Asteraceae.

Reproductive biology of an Alpic paleo-endemic in a changing climate

GUERRINA, MARIA;CASAZZA, GABRIELE;Macrì, C.;MINUTO, LUIGI
2016-01-01

Abstract

Climate change is known to have a profound influence on plant reproduction, mainly because it affects plant/pollinator interactions, sometimes driving plants to extinction. Starting from the Neogene, the European climate was subjected to severe alterations. Nevertheless, several genera, including Berardia, survived these climatic changes. Despite the numerous studies performed about the relationship between climate change and plant reproductive biology, equivalent studies on ancient species are lacking, even though they may furnish crucial information on the strategies that allowed them to survive drastic climatic fluctuations. We investigated floral and reproductive features in Berardia subacaulis (Asteraceae), describing pollen vectors, capitulum and florets phenology, evaluating reproductive efficiency and defining the reproductive mode of the plant with bagging experiments and test of apomixis. B. subacaulis grows in habitats with low pollination services; it is self-compatible, but many typical features favouring cross-pollination are still present: florets are characterized by incomplete protandry, capitulum protogyny and high pollen–ovule ratio. The plant is not apomictic and selffertilization is allowed within each capitulum. Similarly to other European Alpine endemics supposed to belong to the Mediterranean ancient tropical flora, the reproductive mode observed in the monospecific genus Berardia assured reproduction also under a pollinator decline. Differently from the other endemics, it took advantage of its spontaneous self-pollination and compatibility and its generalist pollination service, common both among high altitude plants and in the Asteraceae.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/847494
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact