Abstract The paper presents the potential of using interoperable agent driven simulation to support development planning; indeed the use of simulation represents a strong benefit to improve planning of infrastructures and plants devoted to disaster relief, civil protection and/or support to country development; the paper describes models used to face these challenges and last updates in population modeling for these applications. The proposed models include population characteristics, need as well as their social networks. In humanitarian support operations and country reconstruction there is a huge potential to use simulators; the paper describes how these models should be designed to support training as well operational planning. The models should be able to consider the impacts of contingencies as well as to guarantee the quick responsiveness requirements for humanitarian crisis management. The authors propose a simulator to be shared and used among Armed Forces and Civil Agencies for addressing Crisis Management, Humanitarian Missions, Country Reconstruction and Development considering joint operations (i.e. Civil Military Cooperation); indeed the paper outlines the importance of training people devoted to guarantee interoperability among civil organization and military units in this sector. The paper describes the models based on interoperable simulation as well as the agents driving the entities during the simulation to create quickly complex scenarios able to consider the impact on population and communities of the different actions by including human behavioral models. The proposed approach guarantees interoperability among different simulators within an HLA (High Level Architecture) federation in order to recreate crisis scenarios combining detailed simulation of multiple factors. The proposed approach is verified and validated by proposing an experimental analysis where it is evaluated a set of construction projects (i.e. digging wells) in a stabilization area and their effectiveness both in terms of direct result (i.e. water availability) as well as of population consensus and disaster relief (i.e. stress mitigation, trustiness respect supporting players). (C) 2014 Published by Elsevier B.V.

Development planning based on interoperable agent driven simulation

AGRESTA, MATTEO;FERRANDO, ANGELO
2014-01-01

Abstract

Abstract The paper presents the potential of using interoperable agent driven simulation to support development planning; indeed the use of simulation represents a strong benefit to improve planning of infrastructures and plants devoted to disaster relief, civil protection and/or support to country development; the paper describes models used to face these challenges and last updates in population modeling for these applications. The proposed models include population characteristics, need as well as their social networks. In humanitarian support operations and country reconstruction there is a huge potential to use simulators; the paper describes how these models should be designed to support training as well operational planning. The models should be able to consider the impacts of contingencies as well as to guarantee the quick responsiveness requirements for humanitarian crisis management. The authors propose a simulator to be shared and used among Armed Forces and Civil Agencies for addressing Crisis Management, Humanitarian Missions, Country Reconstruction and Development considering joint operations (i.e. Civil Military Cooperation); indeed the paper outlines the importance of training people devoted to guarantee interoperability among civil organization and military units in this sector. The paper describes the models based on interoperable simulation as well as the agents driving the entities during the simulation to create quickly complex scenarios able to consider the impact on population and communities of the different actions by including human behavioral models. The proposed approach guarantees interoperability among different simulators within an HLA (High Level Architecture) federation in order to recreate crisis scenarios combining detailed simulation of multiple factors. The proposed approach is verified and validated by proposing an experimental analysis where it is evaluated a set of construction projects (i.e. digging wells) in a stabilization area and their effectiveness both in terms of direct result (i.e. water availability) as well as of population consensus and disaster relief (i.e. stress mitigation, trustiness respect supporting players). (C) 2014 Published by Elsevier B.V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/829973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact