This paper quantitatively reports about a practical method to improve both position accuracy and energy efficiency of Servo-Actuated Mechanisms (SAMs) for automated machinery. The method, which is readily applicable on existing systems, is based on the 'smart programming' of the actuator trajectory, which is optimized in order to lower the electric energy consumption, whenever possible, and to improve position accuracy along those portions of the motion law which are process relevant. Both energy demand and tracking precision are computed by means of a virtual prototype of the system. The optimization problem is tackled via a traditional Sequential-Quadratic-Programming algorithm, that varies the position of a series of virtual points subsequently interpolated by means of cubic splines. The optimal trajectory is then implemented on a physical prototype for validation purposes. Experimental data confirm the practical viability of the proposed methodology.

Increasing position accuracy and energy efficiency of servo-actuated mechanisms

BERSELLI, GIOVANNI;
2015-01-01

Abstract

This paper quantitatively reports about a practical method to improve both position accuracy and energy efficiency of Servo-Actuated Mechanisms (SAMs) for automated machinery. The method, which is readily applicable on existing systems, is based on the 'smart programming' of the actuator trajectory, which is optimized in order to lower the electric energy consumption, whenever possible, and to improve position accuracy along those portions of the motion law which are process relevant. Both energy demand and tracking precision are computed by means of a virtual prototype of the system. The optimization problem is tackled via a traditional Sequential-Quadratic-Programming algorithm, that varies the position of a series of virtual points subsequently interpolated by means of cubic splines. The optimal trajectory is then implemented on a physical prototype for validation purposes. Experimental data confirm the practical viability of the proposed methodology.
2015
9781467381833
9781467381833
File in questo prodotto:
File Dimensione Formato  
C2015_1.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/826832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact