In this paper, we combine optimal control theory and machine learning techniques to propose and solve an optimal control formulation of online learning from supervised examples, which are used to learn an unknown vector parameter modeling the relationship between the input examples and their outputs. We show some connections of the problem investigated with the classical LQG optimal control problem, of which the proposed problem is a non-trivial variation, as it involves random matrices. We also compare the optimal solution to the proposed problem with the Kalman-filter estimate of the parameter vector to be learned, demonstrating its larger smoothness and robustness to outliers. Extension of the proposed online-learning framework are mentioned at the end of the paper.
Online Learning as an LQG Optimal Control Problem with Random Matrices
SANGUINETI, MARCELLO
2015-01-01
Abstract
In this paper, we combine optimal control theory and machine learning techniques to propose and solve an optimal control formulation of online learning from supervised examples, which are used to learn an unknown vector parameter modeling the relationship between the input examples and their outputs. We show some connections of the problem investigated with the classical LQG optimal control problem, of which the proposed problem is a non-trivial variation, as it involves random matrices. We also compare the optimal solution to the proposed problem with the Kalman-filter estimate of the parameter vector to be learned, demonstrating its larger smoothness and robustness to outliers. Extension of the proposed online-learning framework are mentioned at the end of the paper.File | Dimensione | Formato | |
---|---|---|---|
ECC15.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
172.18 kB
Formato
Adobe PDF
|
172.18 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.