Creatine is of paramount importance for maintaining and managing cellular ATP stores in both physiological and pathological states. Besides these “ergogenic” actions, it has a number of additional “pleiotropic” effects, e.g., antioxidant activity, neurotransmitter-like behavior, prevention of opening of mitochondrial permeability pore and others. Creatine supplementation has been proposed for a number of conditions, including neurodegenerative diseases. However, it is likely that creatine’s largest therapeutic potential is in those diseases caused by energy shortage or by increased energy demand; for example, ischemic stroke and other cerebrovascular diseases. Surprisingly, despite a large preclinical body of evidence, little or no clinical research has been carried out in these fields. However, recent work showed that high-dose creatine supplementation causes an 8–9 % increase in cerebral creatine content, and that this is capable of improving, in humans, neuropsychological performances that are hampered by hypoxia. In addition, animal work suggests that creatine supplementation may be protective in stroke by increasing not only the neuronal but also the endothelial creatine content. Creatine should be administered before brain ischemia occurs, and thus should be given for prevention purposes to patients at high risk of stroke. In myocardial ischemia, phosphocreatine has been used clinically with positive results, e.g., showing prevention of arrhythmia and improvement in cardiac parameters. Nevertheless, large clinical trials are needed to confirm these results in the context of modern reperfusion interventions. So far, the most compelling evidence for creatine and/or phosphocreatine use in cardiology is as an addition to cardioplegic solutions, where positive effects have been repeatedly reported.

Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease.

BALESTRINO, MAURIZIO;SAROCCHI, MATTEO;ADRIANO, ENRICO GIOVANNI;Spallarossa, Paolo
2016-01-01

Abstract

Creatine is of paramount importance for maintaining and managing cellular ATP stores in both physiological and pathological states. Besides these “ergogenic” actions, it has a number of additional “pleiotropic” effects, e.g., antioxidant activity, neurotransmitter-like behavior, prevention of opening of mitochondrial permeability pore and others. Creatine supplementation has been proposed for a number of conditions, including neurodegenerative diseases. However, it is likely that creatine’s largest therapeutic potential is in those diseases caused by energy shortage or by increased energy demand; for example, ischemic stroke and other cerebrovascular diseases. Surprisingly, despite a large preclinical body of evidence, little or no clinical research has been carried out in these fields. However, recent work showed that high-dose creatine supplementation causes an 8–9 % increase in cerebral creatine content, and that this is capable of improving, in humans, neuropsychological performances that are hampered by hypoxia. In addition, animal work suggests that creatine supplementation may be protective in stroke by increasing not only the neuronal but also the endothelial creatine content. Creatine should be administered before brain ischemia occurs, and thus should be given for prevention purposes to patients at high risk of stroke. In myocardial ischemia, phosphocreatine has been used clinically with positive results, e.g., showing prevention of arrhythmia and improvement in cardiac parameters. Nevertheless, large clinical trials are needed to confirm these results in the context of modern reperfusion interventions. So far, the most compelling evidence for creatine and/or phosphocreatine use in cardiology is as an addition to cardioplegic solutions, where positive effects have been repeatedly reported.
File in questo prodotto:
File Dimensione Formato  
Balestrino2016_Article_PotentialOfCreatineOrPhosphocr.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 546.85 kB
Formato Adobe PDF
546.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/823219
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 36
social impact