The accurate measurement of snowfall is important in various fields of study such as climate variability, transportation, and water resources. A major concern is that snowfall measurements are difficult and can result in significant errors. For example, collection efficiency of most gauge–shield configurations generally decreases with increasing wind speed. In addition, much scatter is observed for a given wind speed, which is thought to be caused by the type of snowflake. Furthermore, the collection efficiency depends strongly on the reference used to correct the data, which is often the Double Fence Intercomparison Reference (DFIR) recommended by the World Meteorological Organization. The goal of this study is to assess the impact of weather conditions on the collection efficiency of the DFIR. Note that the DFIR is defined as a manual gauge placed in a double fence. In this study, however, only the double fence is being investigated while still being called DFIR. To address this issue, a detailed analysis of the flow field in the vicinity of the DFIR is conducted using computational fluid dynamics. Particle trajectories are obtained to compute the collection efficiency associated with different precipitation types for varying wind speed. The results show that the precipitation reaching the center of the DFIR can exceed 100% of the actual precipitation, and it depends on the snowflake type, wind speed, and direction. Overall, this study contributes to a better understanding of the sources of uncertainty associated with the use of the DFIR as a reference gauge to measure snowfall.

Impact of wind direction, wind speed, and particle characteristics on the collection efficiency of the double fence intercomparison reference

COLLI, MATTEO;LANZA, LUCA GIOVANNI
2015-01-01

Abstract

The accurate measurement of snowfall is important in various fields of study such as climate variability, transportation, and water resources. A major concern is that snowfall measurements are difficult and can result in significant errors. For example, collection efficiency of most gauge–shield configurations generally decreases with increasing wind speed. In addition, much scatter is observed for a given wind speed, which is thought to be caused by the type of snowflake. Furthermore, the collection efficiency depends strongly on the reference used to correct the data, which is often the Double Fence Intercomparison Reference (DFIR) recommended by the World Meteorological Organization. The goal of this study is to assess the impact of weather conditions on the collection efficiency of the DFIR. Note that the DFIR is defined as a manual gauge placed in a double fence. In this study, however, only the double fence is being investigated while still being called DFIR. To address this issue, a detailed analysis of the flow field in the vicinity of the DFIR is conducted using computational fluid dynamics. Particle trajectories are obtained to compute the collection efficiency associated with different precipitation types for varying wind speed. The results show that the precipitation reaching the center of the DFIR can exceed 100% of the actual precipitation, and it depends on the snowflake type, wind speed, and direction. Overall, this study contributes to a better understanding of the sources of uncertainty associated with the use of the DFIR as a reference gauge to measure snowfall.
File in questo prodotto:
File Dimensione Formato  
Theriaultetal2015_DFIR.pdf

accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in versione editoriale
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/821516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
social impact