Neutrino oscillation experiments have proved that neutrinos are massive particles but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. The laboratory experiments dedicated to effective electron-neutrino mass determination are the ones based on the study of single beta decay or electron capture (EC) decay. Exploiting only on energy-momentum conservation, this kinematic measurement is the only one which permits to estimate neutrino masses without theoretical assumptions on neutrino nature and it is truly modelindependent. To date the most competitive isotopes for a calorimetric measurement of the neutrino mass are 187Re and 163Ho. While the first decays beta, the latter decays via electron capture, and both have a Q-value around 2.5 keV. The measurement of 163Ho EC is an appealing alternative to the 187Re beta decay measurement because few nuclei are needed and it is a self-calibrating measurement. In this context the MARE project, based on rhenium thermal detectors has been born. We report here the status of MARE in Milan with Rhenium and the activity concerning the production of radioactive 163Ho isotope in the framework of MARE.

The Status of the MARE Experiment with 187Re and 163Ho Isotopes

BAGLIANI, DANIELA;BIASOTTI, MICHELE;CORSINI, DARIO;GATTI, FLAVIO;MANFRINETTI, PIETRO;PIZZIGONI, GIULIO;
2015-01-01

Abstract

Neutrino oscillation experiments have proved that neutrinos are massive particles but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. The laboratory experiments dedicated to effective electron-neutrino mass determination are the ones based on the study of single beta decay or electron capture (EC) decay. Exploiting only on energy-momentum conservation, this kinematic measurement is the only one which permits to estimate neutrino masses without theoretical assumptions on neutrino nature and it is truly modelindependent. To date the most competitive isotopes for a calorimetric measurement of the neutrino mass are 187Re and 163Ho. While the first decays beta, the latter decays via electron capture, and both have a Q-value around 2.5 keV. The measurement of 163Ho EC is an appealing alternative to the 187Re beta decay measurement because few nuclei are needed and it is a self-calibrating measurement. In this context the MARE project, based on rhenium thermal detectors has been born. We report here the status of MARE in Milan with Rhenium and the activity concerning the production of radioactive 163Ho isotope in the framework of MARE.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/814816
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact