A pendulum suspended in a fast flowing soap film may show sustained oscillations. The conditions necessary for self-excited motion to occur are outlined: a flow velocity above a threshold value along with geometrical constraints. The role of vortex shedding is discussed, and the observed instability is shown to be well-described by the galloping instability. Experimental results are supported by numerical simulations. Furthermore, we observe that the instability may be suppressed by attaching a long enough filament to the rear of the pendulum

Galloping instability and control of a rigid pendulum in a flowing soap film

MAZZINO, ANDREA
2015-01-01

Abstract

A pendulum suspended in a fast flowing soap film may show sustained oscillations. The conditions necessary for self-excited motion to occur are outlined: a flow velocity above a threshold value along with geometrical constraints. The role of vortex shedding is discussed, and the observed instability is shown to be well-described by the galloping instability. Experimental results are supported by numerical simulations. Furthermore, we observe that the instability may be suppressed by attaching a long enough filament to the rear of the pendulum
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/813369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact