In this chapter, the closed-form compliance equations for Circularly Curved-Beam Flexures are derived. Following a general modeling procedure previously described in the literature, each element of the spatial compliance matrix is analytically computed as a function of both hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. Finally, a case study is presented concerning the potential application of these types of flexures in the optimal design of compliant robotic fingers.

Evaluating the Spatial Compliance of Circularly Curved-Beam Flexures

BERSELLI, GIOVANNI;
2014-01-01

Abstract

In this chapter, the closed-form compliance equations for Circularly Curved-Beam Flexures are derived. Following a general modeling procedure previously described in the literature, each element of the spatial compliance matrix is analytically computed as a function of both hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. Finally, a case study is presented concerning the potential application of these types of flexures in the optimal design of compliant robotic fingers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/810947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact