In this work we consider a machine learning setting where data are represented as graphs. First, we derive a kernel function which evaluates the similarity between graphs, while capturing pair-wise constraints between graph nodes. Second, we apply it to the problem of classifying collective activities: on this respect we first represent groups of people located in a spatial neighborhood as graphs, and then train a multi-class classifier able to capture the behavior of the groups. We evaluate our approach on a benchmark dataset and report a comparative analysis with other state-of-art methods which highlights the benefits of our approach.

A spectral graph kernel and its application to collective activities classification

NOCETI, NICOLETTA;ODONE, FRANCESCA
2014-01-01

Abstract

In this work we consider a machine learning setting where data are represented as graphs. First, we derive a kernel function which evaluates the similarity between graphs, while capturing pair-wise constraints between graph nodes. Second, we apply it to the problem of classifying collective activities: on this respect we first represent groups of people located in a spatial neighborhood as graphs, and then train a multi-class classifier able to capture the behavior of the groups. We evaluate our approach on a benchmark dataset and report a comparative analysis with other state-of-art methods which highlights the benefits of our approach.
2014
9781479952083
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/810444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact