Ethanol dehydration was investigated over commercial H-FER, H-MFI, H-MOR, H-BEA, H-Y and H-USY zeolite samples, and alumina and silica alumina for comparison. The catalysts were characterized using FT-IR spectroscopy of the surface OH groups and of adsorbed CO and pyridine. UV–vis, Raman and TG-DTA were applied to characterize coke, formed more on H-MOR and H-BEA. H-zeolites are definitely more active than silica alumina and alumina on catalyst weight base. The H-MOR sample is the most active but the H-MFI samples with Si/Al2 ratios 280 and 50 show higher reaction rates per Al ion, H-FER and faujasites show highest ethylene yield (99.9% at 573 K). At lower temperature and higher space velocities, diethyl ether is formed with high yield (>70% at 453–473 K on H-BEA and H-MFI (50)). Overconversion of ethylene mainly to aromatics is observed on H-MFI (50). The different behaviour of protonic zeolites can predominantly be explained by confinement effects on the different zeolite cavities.
Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects
PHUNG, THANH KHOA;LAGAZZO, ALBERTO;BUSCA, GUIDO
2015-01-01
Abstract
Ethanol dehydration was investigated over commercial H-FER, H-MFI, H-MOR, H-BEA, H-Y and H-USY zeolite samples, and alumina and silica alumina for comparison. The catalysts were characterized using FT-IR spectroscopy of the surface OH groups and of adsorbed CO and pyridine. UV–vis, Raman and TG-DTA were applied to characterize coke, formed more on H-MOR and H-BEA. H-zeolites are definitely more active than silica alumina and alumina on catalyst weight base. The H-MOR sample is the most active but the H-MFI samples with Si/Al2 ratios 280 and 50 show higher reaction rates per Al ion, H-FER and faujasites show highest ethylene yield (99.9% at 573 K). At lower temperature and higher space velocities, diethyl ether is formed with high yield (>70% at 453–473 K on H-BEA and H-MFI (50)). Overconversion of ethylene mainly to aromatics is observed on H-MFI (50). The different behaviour of protonic zeolites can predominantly be explained by confinement effects on the different zeolite cavities.File | Dimensione | Formato | |
---|---|---|---|
APCATA-D-14-01477R2 (1).pdf
accesso aperto
Descrizione: articolo dopo refereeing accettato per la stampa
Tipologia:
Documento in Post-print
Dimensione
2.39 MB
Formato
Adobe PDF
|
2.39 MB | Adobe PDF | Visualizza/Apri |
APCATA etanol zeolites.pdf
accesso chiuso
Descrizione: articolo pubblicato coperto da copyright
Tipologia:
Documento in versione editoriale
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.