The goal of this study was to examine the reorganization of hand movements during adaptation to delayed visual feedback in a novel and redundant environment. In most natural behaviors, the brain must learn to invert a many-to-one map from high-dimensional joint movements and muscle forces to a low-dimensional goal. This spatial "inverse map" is learned by associating motor commands to their low-dimensional consequences. How is this map affected by the presence of temporal delays? A delay presents the brain with a new set of kinematic data, and, because of redundancy, the brain may use these data to form a new inverse map. We consider two possible responses to a novel visuomotor delay. In one case, the brain updates the previously learned spatial map, building a new association between motor commands and visual feedback of their effects. In the alternative case, the brain preserves the original map and learns to compensate the delay by a temporal shift of the motor commands. To test these alternative possibilities, we developed a virtual reality game in which subjects controlled the two-dimensional coordinates of a cursor by continuous hand gestures. Two groups of subjects tracked a target along predictable paths by wearing an instrumented data glove that recorded finger motions. The 19-dimensional glove signals controlled a cursor on a 2-dimensional computer display. The experiment was performed on 2 consecutive days. On the 1st day, subjects practiced tracking movements without delay. On the 2nd day, the test group performed the same task with a delay of 300 ms between the glove signals and the cursor display, whereas the control group continued practicing the non-delayed trials. We found evidence that to compensate for the delay, the test group relied on the coordination patterns established during the baseline, e. g., their hand-to-cursor inverse map was robust to the delay perturbation, which was counteracted by an anticipation of the motor command.

Adaptation to visual feedback delay in a redundant motor task.

CASADIO, MAURA;
2015-01-01

Abstract

The goal of this study was to examine the reorganization of hand movements during adaptation to delayed visual feedback in a novel and redundant environment. In most natural behaviors, the brain must learn to invert a many-to-one map from high-dimensional joint movements and muscle forces to a low-dimensional goal. This spatial "inverse map" is learned by associating motor commands to their low-dimensional consequences. How is this map affected by the presence of temporal delays? A delay presents the brain with a new set of kinematic data, and, because of redundancy, the brain may use these data to form a new inverse map. We consider two possible responses to a novel visuomotor delay. In one case, the brain updates the previously learned spatial map, building a new association between motor commands and visual feedback of their effects. In the alternative case, the brain preserves the original map and learns to compensate the delay by a temporal shift of the motor commands. To test these alternative possibilities, we developed a virtual reality game in which subjects controlled the two-dimensional coordinates of a cursor by continuous hand gestures. Two groups of subjects tracked a target along predictable paths by wearing an instrumented data glove that recorded finger motions. The 19-dimensional glove signals controlled a cursor on a 2-dimensional computer display. The experiment was performed on 2 consecutive days. On the 1st day, subjects practiced tracking movements without delay. On the 2nd day, the test group performed the same task with a delay of 300 ms between the glove signals and the cursor display, whereas the control group continued practicing the non-delayed trials. We found evidence that to compensate for the delay, the test group relied on the coordination patterns established during the baseline, e. g., their hand-to-cursor inverse map was robust to the delay perturbation, which was counteracted by an anticipation of the motor command.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/787003
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact