Clinical interventions leading to improved survival in patients with acute myocardial infarction have, paradoxically, increased the need for cardiac regenerative strategies as more people are living with heart failure. Over the last 10-15 years there have been significant advances in our understanding of cell-based therapy for cardiac repair. Evidence that paracrine stimulation largely underlies the functional benefits in cell transplantation has led to a paradigm shift in regenerative medicine: from cell therapy to factor/protein-based therapy. Although, future regenerative approaches may likely involve a synergistic protein cocktail, this review will focus on the role of a promising candidate, thymosin beta 4 (Tβ4) in cardioprotection, neovascularization, tissue regeneration and inflammation - all essential components in cardiac repair.
Thymosin β4 protein therapy for cardiac repair.
BOLLINI, SVEVA;
2012-01-01
Abstract
Clinical interventions leading to improved survival in patients with acute myocardial infarction have, paradoxically, increased the need for cardiac regenerative strategies as more people are living with heart failure. Over the last 10-15 years there have been significant advances in our understanding of cell-based therapy for cardiac repair. Evidence that paracrine stimulation largely underlies the functional benefits in cell transplantation has led to a paradigm shift in regenerative medicine: from cell therapy to factor/protein-based therapy. Although, future regenerative approaches may likely involve a synergistic protein cocktail, this review will focus on the role of a promising candidate, thymosin beta 4 (Tβ4) in cardioprotection, neovascularization, tissue regeneration and inflammation - all essential components in cardiac repair.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.