We prove a general result relating the shape of the Euler product of an L-function to the analytic properties of the linear twists of the L-function itself. Then, by a sharp form of the transformation formula for linear twists, we check the required analytic properties in the case of L-functions of degree 2 and conductor 1 in the Selberg class. Finally we prove a converse theorem, showing that the square of the Riemann zeta function is the only member of the Selberg class with degree 2, conductor 1 and a pole at s=1.

Twists, Euler products and a converse theorem for L-functions of degree 2

PERELLI, ALBERTO
2015-01-01

Abstract

We prove a general result relating the shape of the Euler product of an L-function to the analytic properties of the linear twists of the L-function itself. Then, by a sharp form of the transformation formula for linear twists, we check the required analytic properties in the case of L-functions of degree 2 and conductor 1 in the Selberg class. Finally we prove a converse theorem, showing that the square of the Riemann zeta function is the only member of the Selberg class with degree 2, conductor 1 and a pole at s=1.
File in questo prodotto:
File Dimensione Formato  
109-2015:K-P:deg2-AnnaliSNS.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 715.32 kB
Formato Adobe PDF
715.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/757789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact