We prove a general result relating the shape of the Euler product of an L-function to the analytic properties of the linear twists of the L-function itself. Then, by a sharp form of the transformation formula for linear twists, we check the required analytic properties in the case of L-functions of degree 2 and conductor 1 in the Selberg class. Finally we prove a converse theorem, showing that the square of the Riemann zeta function is the only member of the Selberg class with degree 2, conductor 1 and a pole at s=1.
Titolo: | Twists, Euler products and a converse theorem for L-functions of degree 2 |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Handle: | http://hdl.handle.net/11567/757789 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
109-2015:K-P:deg2-AnnaliSNS.pdf | Documento in versione editoriale | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.