Indoor localization of targets by using electromagnetic waves has attracted a lot of attention in the last few years. Thanks to the wide availability of electromagnetic sources deployed for various applications (e.g., WiFi), nowadays it is possible to perform this task by using low-cost mobile devices, such as smartphones. To this end, in order to achieve high positioning accuracy and reduce the computational resources used in the position estimation, fingerprinting approaches are usually employed. However, in this case, a time-consuming training phase, where a great number of measurements must be performed, is needed. In this letter, a novel approach, where the training data are obtained by means of finite-difference time-domain (FDTD) simulations of the electromagnetic propagation in the considered scenario, is presented. The performances of the method are assessed by means of experimental results in a real scenario.
A trainingless WiFi fingerprint positioning approach over mobile devices
BISIO, IGOR;CERRUTI , MATTEO;LAVAGETTO, FABIO;MARCHESE, MARIO;PASTORINO, MATTEO;RANDAZZO, ANDREA;SCIARRONE, ANDREA
2014-01-01
Abstract
Indoor localization of targets by using electromagnetic waves has attracted a lot of attention in the last few years. Thanks to the wide availability of electromagnetic sources deployed for various applications (e.g., WiFi), nowadays it is possible to perform this task by using low-cost mobile devices, such as smartphones. To this end, in order to achieve high positioning accuracy and reduce the computational resources used in the position estimation, fingerprinting approaches are usually employed. However, in this case, a time-consuming training phase, where a great number of measurements must be performed, is needed. In this letter, a novel approach, where the training data are obtained by means of finite-difference time-domain (FDTD) simulations of the electromagnetic propagation in the considered scenario, is presented. The performances of the method are assessed by means of experimental results in a real scenario.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.