Bernstein, Sturmfels, and Zelevinsky proved in 1993 that the maximal minors of a matrix of variables form a universal Gröbner basis. We present a very short proof of this result, along with broad generalization to matrices with multihomogeneous structures. Our main tool is a rigidity statement for radical Borel fixed ideals in multigraded polynomial rings.

Universal Gröbner Bases for Maximal Minors

CONCA, ALDO;DE NEGRI, EMANUELA;
2014-01-01

Abstract

Bernstein, Sturmfels, and Zelevinsky proved in 1993 that the maximal minors of a matrix of variables form a universal Gröbner basis. We present a very short proof of this result, along with broad generalization to matrices with multihomogeneous structures. Our main tool is a rigidity statement for radical Borel fixed ideals in multigraded polynomial rings.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/697390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 21
social impact