After showing that the General Cayley–Bacharach Conjecture formulated by D. Eisenbud, M. Green, and J. Harris (1996) [6] is equivalent to a conjecture about the region of uniformity of a zerodimensional complete intersection, we prove this Conjecture in a number of special cases. In particular, after splitting the conjecture into several intervals, we prove it for the first, the last and part of the penultimate interval. Moreover, we generalize the uniformityresults of J. Hansen (2003) [12] and L. Gold, J. Little, and H. Schenck (2005) [9] to level schemes and apply them to obtain bounds forthe minimal distance of generalized Reed–Muller codes.

On the Uniformity of Zero-dimensional Complete Intersections

GERAMITA, ANTHONY VITO;
2013-01-01

Abstract

After showing that the General Cayley–Bacharach Conjecture formulated by D. Eisenbud, M. Green, and J. Harris (1996) [6] is equivalent to a conjecture about the region of uniformity of a zerodimensional complete intersection, we prove this Conjecture in a number of special cases. In particular, after splitting the conjecture into several intervals, we prove it for the first, the last and part of the penultimate interval. Moreover, we generalize the uniformityresults of J. Hansen (2003) [12] and L. Gold, J. Little, and H. Schenck (2005) [9] to level schemes and apply them to obtain bounds forthe minimal distance of generalized Reed–Muller codes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/657366
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact