In this paper we discuss the Spectral Support Estimation algorithm (De Vito et al., 2010) by analyzing its 27 geometrical and computational properties. The estimator is non-parametric and the model selection 28 depends on three parameters whose role is clarified by simulations on a two-dimensional space. The performance of the algorithm for novelty detection is tested and compared with its main competitors on a 30 collection of real benchmark datasets of different sizes and types.

Geometrical and computational aspects of Spectral Support Estimation for novelty detection

DE VITO, ERNESTO;ODONE, FRANCESCA
2014

Abstract

In this paper we discuss the Spectral Support Estimation algorithm (De Vito et al., 2010) by analyzing its 27 geometrical and computational properties. The estimator is non-parametric and the model selection 28 depends on three parameters whose role is clarified by simulations on a two-dimensional space. The performance of the algorithm for novelty detection is tested and compared with its main competitors on a 30 collection of real benchmark datasets of different sizes and types.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/644366
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact