The problem of assessing the performance of a classifier, in the finite-sample setting, has been addressed by Vapnik in his seminal work by using data-independent measures of complexity. Recently, several authors have addressed the same problem by proposing data-dependent measures, which tighten previous results by taking in account the actual data distribution. In this framework, we derive some data- dependent bounds on the generalization ability of a classifier by exploiting the Rademacher Complexity and recent concentration results: in addition of being appealing for practical purposes, as they exploit empirical quantities only, these bounds improve previously known results.

An Improved Analysis of the Rademacher Data-dependent Bound Using Its Self-Bounding Property

ONETO, LUCA;GHIO, ALESSANDRO;ANGUITA, DAVIDE;RIDELLA, SANDRO
2013-01-01

Abstract

The problem of assessing the performance of a classifier, in the finite-sample setting, has been addressed by Vapnik in his seminal work by using data-independent measures of complexity. Recently, several authors have addressed the same problem by proposing data-dependent measures, which tighten previous results by taking in account the actual data distribution. In this framework, we derive some data- dependent bounds on the generalization ability of a classifier by exploiting the Rademacher Complexity and recent concentration results: in addition of being appealing for practical purposes, as they exploit empirical quantities only, these bounds improve previously known results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/628597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact