In human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) stimulates some important pathways leading to thromboxane B2 formation, calcium intracellular elevation, ATP secretion and actin polymerisation. The aim of the present study was to examine the 2-AG effect on myosin light chain (MLC) phosphorylation and to investigate the mechanisms involved. We demonstrated that 2-AG induced a rapid MLC phosphorylation, stimulating both the RhoA kinase (ROCK) and MLC kinase (MLCK) in a dose and time-dependent manner. In addition MLC phosphorylation was strengthened through the MLC phosphatase inhibition. MLC phosphatase inhibition was accomplished through the RhoA/ROCK and protein kinase C mediated phosphorylation of MLC phosphatase inhibiting subunits MYPT1 and CPI-17. The presence of CB1 receptor in human platelets and the involvement of CB1 receptor in MLC phosphorylation and MLC phosphatase inhibition was shown.
The 2-arachidonoylglycerol effect on myosin light chain phosphorylation in human platelets
SIGNORELLO, MARIA GRAZIA;PASSALACQUA, MARIO;LEONCINI, GIULIANA
2013-01-01
Abstract
In human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) stimulates some important pathways leading to thromboxane B2 formation, calcium intracellular elevation, ATP secretion and actin polymerisation. The aim of the present study was to examine the 2-AG effect on myosin light chain (MLC) phosphorylation and to investigate the mechanisms involved. We demonstrated that 2-AG induced a rapid MLC phosphorylation, stimulating both the RhoA kinase (ROCK) and MLC kinase (MLCK) in a dose and time-dependent manner. In addition MLC phosphorylation was strengthened through the MLC phosphatase inhibition. MLC phosphatase inhibition was accomplished through the RhoA/ROCK and protein kinase C mediated phosphorylation of MLC phosphatase inhibiting subunits MYPT1 and CPI-17. The presence of CB1 receptor in human platelets and the involvement of CB1 receptor in MLC phosphorylation and MLC phosphatase inhibition was shown.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.