Marine biofouling causes problems for technologies based on the sea, including ships, power plants and marine sensors. Several antifouling techniques have been applied to marine sensors, but most of these methodologies are environmentally unfriendly or ineffective. Bioinspiration, seeking guidance from natural solutions, is a promising approach to antifouling. Here, the eye of the green crab Carcinus maenas was regarded as a marine sensor model and its surface characterized by means of atomic force microscopy. Engineered surface micro- and nanotopography is a new mechanism found to limit biofouling, promising an effective solution with much reduced environmental impact. Besides giving a new insight into the morphology of C. maenas eye and its characterization, our study indicates that the eye surface probably has antifouling/fouling-release potential. Furthermore, the topographical features of the surface may influence the wettability properties of the structure and its interaction with organic molecules. Results indicate that the eye surface micro- and nanotopography may lead to bioinspired solutions to antifouling protection.

Microtopography of the eye surface of the crab Carcinus maenas: an atomic force microscope study suggesting a possible antifouling potential.

ROLANDI, RANIERI;
2013

Abstract

Marine biofouling causes problems for technologies based on the sea, including ships, power plants and marine sensors. Several antifouling techniques have been applied to marine sensors, but most of these methodologies are environmentally unfriendly or ineffective. Bioinspiration, seeking guidance from natural solutions, is a promising approach to antifouling. Here, the eye of the green crab Carcinus maenas was regarded as a marine sensor model and its surface characterized by means of atomic force microscopy. Engineered surface micro- and nanotopography is a new mechanism found to limit biofouling, promising an effective solution with much reduced environmental impact. Besides giving a new insight into the morphology of C. maenas eye and its characterization, our study indicates that the eye surface probably has antifouling/fouling-release potential. Furthermore, the topographical features of the surface may influence the wettability properties of the structure and its interaction with organic molecules. Results indicate that the eye surface micro- and nanotopography may lead to bioinspired solutions to antifouling protection.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/588123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact