We propose here a fast way to perform the gradient computation in Support Vector Machine (SVM) learning, when samples are positioned on a m-dimensional grid. Our method takes advantage of the particular structure of the constrained quadratic programming problem arising in this case. We show how such structure is connected to the properties of block Toeplitz matrices and how they can be used to speed-up the computation of matrix-vector products
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Fast training of Support Vector Machines for Regression | |
Autori: | ||
Data di pubblicazione: | 2000 | |
Abstract: | We propose here a fast way to perform the gradient computation in Support Vector Machine (SVM) learning, when samples are positioned on a m-dimensional grid. Our method takes advantage of the particular structure of the constrained quadratic programming problem arising in this case. We show how such structure is connected to the properties of block Toeplitz matrices and how they can be used to speed-up the computation of matrix-vector products | |
Handle: | http://hdl.handle.net/11567/539217 | |
ISBN: | 0769506194 | |
Appare nelle tipologie: | 04.01 - Contributo in atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.