We prove a theorem, which provides a formula for the computation of the Poincar\'e series of a monomial ideal in $k[X_1,\dots,X_n]$, via the computation of the Poincare' series of some monomial ideals in $k[X_1,\dots ,\widehat{X_i}, \dots,X_n]$. The complexity of our algorithm is optimal for Borel-normed ideals and an implementation in CoCoA strongly confirms its efficiency. An easy extension computes the Poincare' series of graded modules over standard algebras.

On the computation of Hilbert-Poincare` Series

BIGATTI, ANNA MARIA;CABOARA, MASSIMO;ROBBIANO, LORENZO
1991

Abstract

We prove a theorem, which provides a formula for the computation of the Poincar\'e series of a monomial ideal in $k[X_1,\dots,X_n]$, via the computation of the Poincare' series of some monomial ideals in $k[X_1,\dots ,\widehat{X_i}, \dots,X_n]$. The complexity of our algorithm is optimal for Borel-normed ideals and an implementation in CoCoA strongly confirms its efficiency. An easy extension computes the Poincare' series of graded modules over standard algebras.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/509119
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact