In this work we describe a necessary and sufficient condition for decoherence of quantum Markov evolutions acting on matrix spaces (according to the definition introduced by Blanchard and Olkiewicz). This condition is related to the spectral analysis of the generator L of the semigroup and is easily stated: the evolution displays decoherence if and only if the maximal algebra N(T ) on which the semigroup is ∗-automorphic contains all the eigenvalues of L associated with eigenvectors with null real part. Moreover, this condition is surely verified when the semigroup admits a faithful invariant state.

Decoherence for Quantum Markov Semigroups on Matrix Algebras

SASSO, EMANUELA;UMANITA', VERONICA
2013

Abstract

In this work we describe a necessary and sufficient condition for decoherence of quantum Markov evolutions acting on matrix spaces (according to the definition introduced by Blanchard and Olkiewicz). This condition is related to the spectral analysis of the generator L of the semigroup and is easily stated: the evolution displays decoherence if and only if the maximal algebra N(T ) on which the semigroup is ∗-automorphic contains all the eigenvalues of L associated with eigenvectors with null real part. Moreover, this condition is surely verified when the semigroup admits a faithful invariant state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/504544
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact