For a Markov chain, both the detailed balance condition and the cycle Kolmogorov condition are algebraic binomials. This remark suggests to study reversible Markov chains with the tool of Algebraic Statistics, such as toric statistical models. One of the results of this study is an algebraic parameterization of reversible Markov transitions and their invariant probability.

The algebra of reversible Markov chains

ROGANTIN, MARIA PIERA
2013

Abstract

For a Markov chain, both the detailed balance condition and the cycle Kolmogorov condition are algebraic binomials. This remark suggests to study reversible Markov chains with the tool of Algebraic Statistics, such as toric statistical models. One of the results of this study is an algebraic parameterization of reversible Markov transitions and their invariant probability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/399322
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact