Let K be a distribution on R^2. We denote by λ(K) the twisted convolution operator f → K × f defined by the formula K × f(x, y) = ∫∫ du dv K(x − u, y − v) f(u, v) exp(ixv − iyu). We show that there exists K such that the operator λ(K) is bounded on L^p(R^2) for every p in (1, 2], but is unbounded on L^q(R^2) for every q > 2.

Asymmetry of twisted convolution operators

MANTERO, ANNA MARIA
1982

Abstract

Let K be a distribution on R^2. We denote by λ(K) the twisted convolution operator f → K × f defined by the formula K × f(x, y) = ∫∫ du dv K(x − u, y − v) f(u, v) exp(ixv − iyu). We show that there exists K such that the operator λ(K) is bounded on L^p(R^2) for every p in (1, 2], but is unbounded on L^q(R^2) for every q > 2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/387247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact