A linear stability analysis of the laminar flow in the boundary layer at the bottom of a solitary wave is made to determine the conditions leading to transition and the appearance of turbulence. The Reynolds number of the phenomenon is assumed to be large and a 'momentary' criterion of instability is used. The results show that the laminar regime becomes unstable during the decelerating phase, when the height of the solitary wave exceeds a threshold value which depends on the ratio between the boundary layer thickness and the local water depth. A comparison of the theoretical results with the experimental measurements of Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207-231) supports the analysis.
Transition to turbulence at the bottom of a solitary wave
BLONDEAUX, PAOLO;PRALITS, JAN OSCAR;VITTORI, GIOVANNA
2012-01-01
Abstract
A linear stability analysis of the laminar flow in the boundary layer at the bottom of a solitary wave is made to determine the conditions leading to transition and the appearance of turbulence. The Reynolds number of the phenomenon is assumed to be large and a 'momentary' criterion of instability is used. The results show that the laminar regime becomes unstable during the decelerating phase, when the height of the solitary wave exceeds a threshold value which depends on the ratio between the boundary layer thickness and the local water depth. A comparison of the theoretical results with the experimental measurements of Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207-231) supports the analysis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.