Imprecision, incompleteness, prior knowledge or improved learning speed can motivate interval–represented data. Most approaches for SVM learning of interval data use local kernels based on interval distances. We present here a novel approach, suitable for linear SVMs, which allows to deal with interval data without resorting to interval distances. The experimental results confirms the validity of our proposal.

Interval Discriminant Analysis using Support Vector Machines

ANGUITA, DAVIDE;
2007-01-01

Abstract

Imprecision, incompleteness, prior knowledge or improved learning speed can motivate interval–represented data. Most approaches for SVM learning of interval data use local kernels based on interval distances. We present here a novel approach, suitable for linear SVMs, which allows to deal with interval data without resorting to interval distances. The experimental results confirms the validity of our proposal.
2007
9782930307077
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/315627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact