A common belief is that Machine Learning Theory (MLT) is not very useful, in pratice, for performing effective SVM model selection. This fact is supported by experience, because well-known hold-out methods like cross-validation, leave-one-out, and the bootstrap usually achieve better results than the ones derived from MLT. We show in this paper that, in a small sample setting, i.e. when the dimensionality of the data is larger than the number of samples, a careful application of the MLT can outperform other methods in selecting the optimal hyperparameters of a SVM.

Model Selection for Support Vector Machines: Advantages and Disadvantages of the Machine Learning Theory

ANGUITA, DAVIDE;GHIO, ALESSANDRO;ONETO, LUCA;RIDELLA, SANDRO
2010-01-01

Abstract

A common belief is that Machine Learning Theory (MLT) is not very useful, in pratice, for performing effective SVM model selection. This fact is supported by experience, because well-known hold-out methods like cross-validation, leave-one-out, and the bootstrap usually achieve better results than the ones derived from MLT. We show in this paper that, in a small sample setting, i.e. when the dimensionality of the data is larger than the number of samples, a careful application of the MLT can outperform other methods in selecting the optimal hyperparameters of a SVM.
2010
9781424469161
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/315097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? ND
social impact