A stability study of perovskitic LaREO3 oxides (RE = Dy, Ho, Er, Tm, Yb, Lu) as a function of temperature was undertaken. A correlation between the Goldschmidt t value and the perovskitic stability field amplitude was found: the latter widens as t increases. Magnetic measurements, performed on all the perovskitic samples, showed that t is also related to the exchange interactions. LaREO3 oxides were synthesized by thermal decomposition of the corresponding coprecipitated oxalates at temperatures ranging between 600 and 1800 ◦C. Simultaneous differential thermal and thermogravimetric analyses showed that all the La–RE mixed oxalates decompose similarly. All the oxides, except LaDyO3, crystallize in the perovskitic form in a temperature range that depends on the ionic size difference between La and the smaller rare earth; above and below the perovskitic stability field, the B or C form, typical of rare earth sesquioxides, is present. Rietveld refinements, carried out on all the LaREO3 samples synthesized at 1200 ◦C, showed the occurrence of an orthorhombic distorted perovskitic structure belonging to the Pnma space group.

Stability fields and structural properties of intra rare earths perovskites.

ARTINI, CRISTINA;COSTA, GIORGIO;CARNASCIALI, MARIA;MASINI, ROBERTO
2010-01-01

Abstract

A stability study of perovskitic LaREO3 oxides (RE = Dy, Ho, Er, Tm, Yb, Lu) as a function of temperature was undertaken. A correlation between the Goldschmidt t value and the perovskitic stability field amplitude was found: the latter widens as t increases. Magnetic measurements, performed on all the perovskitic samples, showed that t is also related to the exchange interactions. LaREO3 oxides were synthesized by thermal decomposition of the corresponding coprecipitated oxalates at temperatures ranging between 600 and 1800 ◦C. Simultaneous differential thermal and thermogravimetric analyses showed that all the La–RE mixed oxalates decompose similarly. All the oxides, except LaDyO3, crystallize in the perovskitic form in a temperature range that depends on the ionic size difference between La and the smaller rare earth; above and below the perovskitic stability field, the B or C form, typical of rare earth sesquioxides, is present. Rietveld refinements, carried out on all the LaREO3 samples synthesized at 1200 ◦C, showed the occurrence of an orthorhombic distorted perovskitic structure belonging to the Pnma space group.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/306489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 24
social impact