Here we report the experimental observation of circular dichroism in the second-harmonic field (800-400 nm conversion) generated by self-organized gold nanowire arrays with subwavelength periodicity (160 nm). Such circular dichroism, raised by a nonlinear optical extrinsic chirality, is the evident signature of the sample morphology. It arises from the curvature of the self-assembled wires, producing a lack of symmetry at oblique incidence. The results were compared, both in the optical linear and nonlinear regime, with a reference sample composed of straight wires. Despite the weak extrinsic optical chirality of our samples (not observable by our optical linear measurements), high visibility (more than 50%) was obtained in the second-harmonic generated field.
Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires
CHIAPPE, DANIELE;MARTELLA, CHRISTIAN;TOMA, ANDREA;GIORDANO, MARIA CATERINA;BUATIER DE MONGEOT, FRANCESCO
2011-01-01
Abstract
Here we report the experimental observation of circular dichroism in the second-harmonic field (800-400 nm conversion) generated by self-organized gold nanowire arrays with subwavelength periodicity (160 nm). Such circular dichroism, raised by a nonlinear optical extrinsic chirality, is the evident signature of the sample morphology. It arises from the curvature of the self-assembled wires, producing a lack of symmetry at oblique incidence. The results were compared, both in the optical linear and nonlinear regime, with a reference sample composed of straight wires. Despite the weak extrinsic optical chirality of our samples (not observable by our optical linear measurements), high visibility (more than 50%) was obtained in the second-harmonic generated field.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.