Combined heat and power (CHP) systems in both power stations and large plants are becoming one of the most important tools for reducing energy requirements and consequently the overall carbon footprint of fundamental industrial activities. While power stations employ topping cycles where the heat rejected from the cycle is supplied to domestic and industrial consumers, the plants that produce surplus heat can utilise bottoming cycles to generate electrical power. Traditionally the waste heat available at high temperatures was used to generate electrical power, whereas energy at lower temperatures was either released to the environment or used for commercial or domestic heating. However the introduction of new engines, such as the ones using the organic Rankine cycle, capable of employing condensing temperatures very close to the ambient temperature, has made the generation of electrical power at low temperatures also convenient. On the other hand, district heating is becoming more and more significant since it has been extended to include cooling in the warm months and underground storage of thermal energy to cope with variable demand. These developments imply that electric power generation and district heating/cooling may become alternative and not complementary solutions for waste energy of industrial plants. Therefore the overall energy management requires the introduction of an optimisation algorithm to select the best strategy. In this paper we propose an algorithm for the minimisation of a suitable cost function, for any given variable heat demand from commercial and domestic users, with respect to all independent variables, i.e., temperatures and flowrates of warm fluid streams leaving the plants and volume and nature of underground storage. The results of the preliminary process integration analysis based on pinch technology are used in this algorithm to provide bounds on the values of temperatures.
Optimal Design of Cogeneration Systems in Industrial Plants Combined with District Heating/Cooling and Underground Thermal Energy Storage
REVERBERI, ANDREA;DEL BORGHI, ADRIANA;DOVI', VINCENZO
2011-01-01
Abstract
Combined heat and power (CHP) systems in both power stations and large plants are becoming one of the most important tools for reducing energy requirements and consequently the overall carbon footprint of fundamental industrial activities. While power stations employ topping cycles where the heat rejected from the cycle is supplied to domestic and industrial consumers, the plants that produce surplus heat can utilise bottoming cycles to generate electrical power. Traditionally the waste heat available at high temperatures was used to generate electrical power, whereas energy at lower temperatures was either released to the environment or used for commercial or domestic heating. However the introduction of new engines, such as the ones using the organic Rankine cycle, capable of employing condensing temperatures very close to the ambient temperature, has made the generation of electrical power at low temperatures also convenient. On the other hand, district heating is becoming more and more significant since it has been extended to include cooling in the warm months and underground storage of thermal energy to cope with variable demand. These developments imply that electric power generation and district heating/cooling may become alternative and not complementary solutions for waste energy of industrial plants. Therefore the overall energy management requires the introduction of an optimisation algorithm to select the best strategy. In this paper we propose an algorithm for the minimisation of a suitable cost function, for any given variable heat demand from commercial and domestic users, with respect to all independent variables, i.e., temperatures and flowrates of warm fluid streams leaving the plants and volume and nature of underground storage. The results of the preliminary process integration analysis based on pinch technology are used in this algorithm to provide bounds on the values of temperatures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.